
Deployment Guide

for NGINX and IBM
WebSphere Application Server

Published June 19, 2015
Version 1.1

Using NGINX

to Load Balance

IBM WebSphere

2
IBM WEBSPHERE DEPLOYMENT GUIDE

Table of

Contents

3 About NGINX Plus

3 Using this Guide

4 Prerequisites and System Requirements

5 NGINX vs. IBM HTTP Server

 6 Basic Load Balancing with NGINX

11 Advanced Load Balancing with NGINX Plus

14 Manually Translating plugin-cfg.xml

16 Private WebSphere Headers

18 Building NGINX from Source

19 Configuration Samples

3
IBM WEBSPHERE DEPLOYMENT GUIDE

This guide explains how to

deploy NGINX and NGINX Plus

to load balance traffic across a

pool of IBM WebSphere

Application Servers. It provides

complete instructions for

customizing both NGINX and

IBM WebSphere as required.

About NGINX Plus
NGINX Plus is the commercially supported version of the open source NGINX

software. NGINX Plus is a complete application delivery platform, extending the

power of NGINX with a host of enterprise-ready capabilities that are instrumental to

building web applications at scale:

• Full-featured HTTP and TCP load balancing

• High-performance reverse proxy

• Caching and offload of dynamic and static content

• Adaptive streaming to deliver audio and video to any device

• Application-aware health checks and high availability

• Advanced activity monitoring available via a dashboard or API

• Management and real-time configuration changes with DevOps-friendly tools

Using this Guide

This guide is licensed under a Creative Commons Attribution 4.0 International
License. It was originally created by IBM authors:

• Ed Lu elu@us.ibm.com
• Eric Covener ecovener@us.ibm.com

After reviewing the ''Prerequisites and System Requirements'' on page 4, perform

the instructions in the following sections.

http://www.nginx.com/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:elu@us.ibm.com
mailto:ecovener@us.ibm.com

4
IBM WEBSPHERE DEPLOYMENT GUIDE

Prerequisites and

System Requirements

• IBM WebSphere, installed and configured on a system.

• Linux system to host NGINX or NGINX Plus (in on-premise and private-cloud deployments). To avoid

potential conflicts with other applications, we recommend you install NGINX Plus on a fresh system.

For the list of Linux distributions supported by NGINX Plus, see NGINX Plus Technical

Specifications.

• NGINX 1.9.1 or later; or NGINX Plus R6 or later.

The instructions assume you have basic Linux system administration skills, including the following. Full

instructions are not provided for these tasks.

• Installing Linux software from vendor-supplied packages

• Editing configuration files

• Copying files between a central administrative system and Linux servers

• Running basic commands to start and stop services

• Reading log files

http://nginx.com/products/technical-specs/
http://nginx.com/products/technical-specs/

NGINX vs. IBM HTTP Server

NGINX is an open source webserver and reverse proxy that has grown in popularity in recent years due to
its scalability. NGINX was first created to solve the C10K problem - serving 10,000 simultaneous
connections on a single webserver. NGINX’s features and performance have made it a staple of high
performance sites -- now powering 1 in 3 of the world's busiest web properties

NGINX Plus is the commercial (subscription-based) version of NGINX open source. It adds a number of
features for load-balancing and proxying traffic that can enhance a WebSphere Application Server
deployment, including session persistence, health checks, dynamic configuration and live activity data.
NGINX Plus is fully supported by NGINX, Inc.

Further information about NGINX Plus can be found here.

On the other hand, IBM HTTP Server (IHS) is the traditional reverse proxy for WebSphere Application
Server. IHS and WAS are tightly integrated via the WebSphere WebServer Plug-in and there is a wealth of
documentation and expertise in the WebSphere community.

In many ways, NGINX and IHS are similar. They are configured similarly, and behave similarly on the
outside. However, on the inside, they are quite different. At low load or ideal network conditions, they
perform comparably well. However, NGINX is made to scale well on large numbers of long-lived
connections and in the face of large traffic variations - exactly where IHS's one-thread-per-connection
struggles.

In addition, NGINX is well-equipped to handle HTTP/2 traffic - it currently supports SPDY, and powers the
majority of sites that have adopted this standard. HTTP/2 support is planned for release in late 2015; there
are currently no plans to support HTTP/2 within IHS.

On the other hand, there are some WebSphere specific features that are currently only integrated into IHS
and Datapower - for example, dynamic clustering of WebSphere Application Servers. Currently, NGINX
can only proxy to statically-defined groups of application servers. NGINX Plus does offer an API to
configure load balancing groups, or can be configured via DNS.

NGINX may provide significant value in environments where acceleration via SPDY, HTTP/2 or a high
performance centralized cache smaller than an appliance is needed.

http://w3techs.com/technologies/cross/web_server/ranking
http://nginx.com/products/
http://w3techs.com/technologies/segmentation/ce-spdy/web_server
http://w3techs.com/technologies/segmentation/ce-spdy/web_server

IBM WEBSPHERE DEPLOYMENT GUIDE

6

Basic Load Balancing with

NGINX

This section outlines some basic information on setting up NGINX as a load balancer and reverse proxy.
The configuration here is essentially equivalent to what one would get with a generated plugin-cfg.xml for
the WAS plugin.

NGINX's proxying is based around the concept of an "upstream group", which defines a group of servers.
Setting up a simple reverse proxy invloves defining an upstream group, then using it in one or more
proxy_pass directives.

Here is an example of an upstream group:

http {

 ...

 upstream websphere {

 server 127.0.0.1:9080;

 server 127.0.0.1:9081;

 }

}

The upstream group above, named websphere, is defined by two servers. Both are on ip 127.0.0.1, with
one server on port 9080 and the other on 9081. Note that the upstream group is placed within an http
block.
We use the proxy_pass directive within a location block to point at an upstream:

http {

 ...

 server {

 ...

 location /webapp/ {

 proxy_pass http://websphere;

 }

 }

}

This tells NGINX to proxy all HTTP requests starting with /webapp/ to one of the servers in the
websphere upstream. Note that this configuration only applies to HTTP traffic; additional configuration is

needed both for SSL and for Proxying Websockets.

For more information on proxying, refer to the official NGINX documentation on the proxy module and the
upstream module.

The NGINX guides: Load Balancing part 1 and Load Balancing part 2 provide a step-by-step walkthrough,
and the document on-the-fly reconfiguration of NGINX Plus describes how NGINX Plus' load balancing
groups can be configured using an API or DNS.

Load Balancing

The default strategy for load balancing among servers in a given upstream group is round-robin. In round-

robin load balancing, requests are distributed evenly among all servers in turn. For example, in the above

proxying configuration, the first request will go to port 9080, the second to 9081, the third to 9080, and so

on.

There are several other load balancing strategies included in NGINX; for more info, see this article on load

balancing.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.com/blog/load-balancing-with-nginx-plus
http://nginx.com/blog/load-balancing-with-nginx-plus-part2/
http://nginx.com/products/on-the-fly-reconfiguration/
http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html

IBM WEBSPHERE DEPLOYMENT GUIDE

7

Failover

Failover is also automatically configured when using an upstream group. By default, when a request

comes in and it is directed to an unreachable server, NGINX marks that server down for some time and

automatically redirects the request to another server. After 10 seconds, NGINX starts sending requests to

the downed server. If those requests succeed, the server returns to normal operation; otherwise, it

remains down for another 10 seconds.

See the documentation for the server directive to configure parameters related to failover.

Session Persistence

If your architecture has IHS between NGINX and WebSphere, then no session persistence on the NGINX

side is required - IHS will handle session persistence. If NGINX is proxying straight to WAS, then session

persistence may be beneficial.

Session persistence in the open-source version can be achieved by modifying the load balancing algorithm
or using third-party modules. The ip_hash load balancing method will provide session persistence for

clients that are not changing their IP addresses frequently.

In order to use hash based load balancing methods modify the upstream block:

upstream websphere {

 ip_hash;

 server 127.0.0.1:9080;

 server 127.0.0.1:9081;

}

Configuring NGINX to Proxy SSL traffic

This section describes how to configure SSL communication between NGINX and WebSphere as well

as TLS communication between the client software and NGINX.

Enabling SSL in NGINX

NGINX Plus includes SSL support by default. If using the open source version of NGINX, the SSL

module must be enabled manually Building NGINX from Source. During the configure step, pass the

argument:

--with-http_ssl_module

If this argument is not passed to configure, NGINX will not support the directives needed for SSL

communication.

Extracting the certificate and private key

It's likely that the server certificate is currently stored in a kdb file for use with WebSphere. Before using

the server certificate with NGINX, it must be converted into PEM format, and the private key must be

separated out. If you happen to have the certificate and key file in PEM format already, you can skip this

subsection.

Note that the commands below using gskcapi c md can also be executed in i key man by selecting the

relevant options in the GUI.

1. Find the certificate you wish to export from the kdb. List the certificates by executing:

gskcapicmd -cert -list -db key.kdb -stashed

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#server

IBM WEBSPHERE DEPLOYMENT GUIDE

8

2. Export the certificate and its associated private key to a pkcs12 file:

gskcapicmd -cert -export -db key.kdb -label CERT_LABEL -type cms -

target /tmp/conv.p12 -target_type p12

3. Extract the certificate and the private key from the pkcs12 file: 

openssl pkcs12 -in /tmp/conv.p12 -nocerts -out privkey.pem

openssl pkcs12 -in /tmp/conv.p12 -clcerts -nokeys -out servercert.pem

4. Extract any intermediate certificates from the kdb: 

gskcapicmd -cert -extract -db key.kdb -label INTERMEDIATE_LABEL –file

/tmp/intermediate.pem -format ascii

5. Concatenate the intermediate certificates and the server certificate, making sure the server

certificate is first: 

cat servercert.pem /tmp/intermediate1.pem /tmp/intermediate2.pem >

certchain.pem

The certificate and secret key are now in a format that is useable by NGINX.

WARNING: pri vkey. pe m contains the unencrypted private key of the server, and should be

secured appropriately.

Configuring SSL in NGINX

A new server block must be created for the SSL server configuration. The default configuration provides

one, commented out by default. Here it is along with a sample location block, for proxying to

WebSphere:

server {

 listen 443 ssl;

 server_name myserver;

 ssl_certificate certchain.pem;

 ssl_certificate_key privkey.pem;

 ssl_session_cache shared:SSL:1m;

 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;

 ssl_prefer_server_ciphers on;

 location /webapp/ {

 proxy_pass https://websphere_ssl

 }

}

The arguments to the ssl_certificate and ssl_certificate_key should be changed to the

paths to your certificate bundle and private key in PEM format. The l ocati on block is the same as that in

the previous section on proxying, except that the scheme is changed from http to https.

For more information on SSL configuration in NGINX, refer to this article and the documentation on the

ssl module.

Proxying Websockets

http://nginx.org/en/docs/http/configuring_https_servers.html
http://nginx.org/en/docs/http/ngx_http_ssl_module.html
http://nginx.org/en/docs/http/ngx_http_ssl_module.html

IBM WEBSPHERE DEPLOYMENT GUIDE

9

When the WebSphere WebServer Plug-in is used in an Apache-based server, websockets traffic is

proxied without any additional configuration. If any other HTTP terminating software is used with

websockets, it typically requires explicit configuration.

In NGINX, upstream connections use HTTP/1.0 by default. Websocket connections require HTTP/1.1

along with some other configuration to be proxied correctly. Here is an example configuration:

http {

 ...

 map $http_upgrade $connection_upgrade {

 default upgrade;

 '' close;

 }

 server {

 ...

 location /wstunnel/ {

 proxy_pass http://websphere;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

 }

}

Special rules are needed because the Upgrade header is a hop-by-hop header, i.e. the HTTP specification

explicitly notes that is not to be passed on by proxies. In the configuration above, we explicitly pass on the

Upgrade header. Additionally, if the request had an Upgr ade header, then the Connection header is set

to upgrade; otherwise, it is set to close.

Some additional issues must be considered if NGINX is proxying to IHS and will need to maintain many

thousands of open websockets connections. IHS is not well equipped to handle high loads of long-lived

connections. For this reason, it is better to skip over the IHS instance when proxying websockets to the

application server. A nested location directive can be used for this, e.g.:

location / {

 proxy_pass http://IBMHTTPServer;

 location /wstunnel/ {

 proxy_pass http://websphere;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

}

See this article for more information on proxying websockets.

Caching

Scalable HTTP caches have a recognized value on the edge of the network. The Datapower XC10

appliance is an example of a sophisticated, scalable HTTP caching appliance using a WebSphere

Extreme Scale (WXS) datagrid for storage.

NGINX provides a scalable disk-based cache that integrates with its reverse proxy capability. The

pr oxy_cache directive is the key here. Here is a very simple caching configuration:

http://nginx.org/en/docs/http/websocket.html

IBM WEBSPHERE DEPLOYMENT GUIDE

10

http {

 ...

 proxy_cache_path /tmp/NGINX_cache/ keys_zone=backcache:10m;

 server {

 listen 80;

 proxy_cache backcache;

 location /webapp/ {

 proxy_pass http://websphere;

 }

 }

}

This configuration creates a cache in the directory /tmp/NGINX_cache/, and caches all responses

that come through the proxy on port 80. Note that the size argument to keys_zone (10m in this case)

should be set proportional to the number of pages that should be cached. The value is OS dependent,

as it relies on file metadata size.

For more complete information on caching in NGINX, refer to the offical documentation and this article.

SPDY Support

At time of writing, NGINX does not support HTTP/2. NGINX does, however, support SPDY, the

predecessor of HTTP/2. SPDY is not enabled in the server by default, and support is experimental as

the protocol specification is subject to change.

NGINX Plus includes SPDY support by default, but it is a compile-time option for NGINX. To compile

SPDY into NGINX, follow the steps in the section below, “Building NGINX from Source”. Upon the

configure step, instead of running only ./configure, add the --with-http_spdy_module

parameter:

./configure --with-http_spdy_module

After completing the rest of the build steps, you should have a build of NGINX with SPDY enabled. To

enable SPDY, simply add the spdy keyword to the listen statement:

server {

 listen 443 ssl spdy;

 ….

 }

For more information, see the documentation on the SPDY module.

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_cache_path
http://nginx.com/resources/admin-guide/caching/
http://nginx.org/en/docs/http/ngx_http_spdy_module.html

IBM WEBSPHERE DEPLOYMENT GUIDE

11

Advanced Load Balancing with
NGINX Plus

This section outlines how to configure the additional functionality available with NGINX Plus.

Health checks

Health checks are out-of-band HTTP requests sent to probe a server on a preset interval. They are used

to determine whether or not a server is still up without requiring an actual request from a user. To enable

health checks for a server, add the health_check directive to the location block of a given proxy_pass

directive:

http {

 upstream websphere {

 # Health-monitored upstream groups must be stored in shared memory

 zone websphere 64k;

 server 127.0.0.1:9080 slow_start=30s;

 server 127.0.0.1:9081 slow_start=30s;

 }

 server {

 location /webapp/ {

 proxy_pass http://websphere;

 health_check;

 }

 }

}

This configuration will send an out-of-band request for the URI / to each of the servers in the upstream

websphere every 5 seconds. Any server that does not respond with a successful response will be marked

down. Note that the health_check directive is placed within the location block, not the upstream block;

this means health checks can be enabled per-application.

Unlike previous upstream groups in this document, the one in the above example has a zone directive.

This directive defines a shared memory zone which stores the group's configuration and run-time state,

and is required when using the health check feature.

See the documentation for the health_check directive for more information and details on how to

customize health checks.

NGINX Plus also provides a slow start feature when failed servers recover and are reintroduced into the

load-balancing pool. slow_start is configured per server in the upstream group.

Session Persistence

NGINX Plus has a built-in sticky directive to handle session persistence. We can use the JSESSIONID

cookie, created by WAS, as the session identifier by taking advantage of the learn method. Here is an

example configuration:.

upstream websphere {

 zone websphere 64k;

 server 127.0.0.1:9080 slow_start=30s;

http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_upstream_module.html#slow_start

IBM WEBSPHERE DEPLOYMENT GUIDE

12

 server 127.0.0.1:9081 slow_start=30s;

 sticky learn

 create=$upstream_cookie_JSESSIONID

 lookup=$cookie_JSESSIONID

 zone=client_sessions:1m;

}

Note that for any given request, the $upstream_cookie_JSESSIONID variable contains the value of the

JSESSIONID cookie sent from the backend server in the Set - Cooki e header. Likewise, the

$cookie_JSESSIONID variable contains the value of the JSESSIONID cookie sent from the client in the

Cookie header. These two variables, specified in the create and lookup arguments, specify what values

are used to create new sessions and lookup existing sessions, respectively.

The zone argument specifies a shared memory zone where sessions are stored. The size passed to the

argument - one megabyte, here - determines how many sessions can be stored at a time. The amount of

sessions that can be stored in any given space is platform dependent. Note that the name passed to the

zone argument must be unique for each sti cky directive.

For more information on sticky sessions, refer to the documentation on the sticky directive.

Enabling the Live Activity Monitoring Dashboard

NGINX Plus includes a live activity monitoring interface that provides key load and performance metrics in
real time. Statistics are reported through a RESTful JSON interface, making it very easy to feed the data to a
custom or third-party monitoring tool. These instructions deploy the display dashboard that is built into
NGINX Plus.

For more information on live activity monitoring, refer to the documentation on live activity monitoring.  

Installing the Dashboard

The quickest way to configure the built-in NGINX Plus dashboard is to download the sample configuration
file from the NGINX, Inc. website:

curl http://nginx.com/resources/conf/status.txt >

/etc/nginx/conf.d/status.conf

 
Comments in the status.conf file explain which directives you must customize for your deployment. In

particular, the default settings in the sample configuration file allow anyone on any network to access the
dashboard. We strongly recommend that you restrict access to the dashboard with one or more of the
following methods:  

IP address-based access control lists (ACLs)

In the sample configuration file, uncomment the allow and deny directives, and substitute the address of

your administrative network for 10.0.0.0/8. Only users on the specified network can access the status page.

allow 10.0.0/8;

deny all;

HTTP basic authentication

In the sample configuration file, uncomment the auth_basic and auth_basic_user_file directives and add
user entries to the /etc/nginx/users file (for example, by using an htpasswd generator).

auth_basic on;

auth_basic_user_file /etc/nginx/users;

Client certificates, which are part of a complete configuration of SSL or TLS. For more information, see

http://nginx.org/en/docs/http/ngx_http_upstream_module.html#sticky
http://nginx.com/products/live-activity-monitoring/
http://httpd.apache.org/docs/2.4/programs/htpasswd.html

IBM WEBSPHERE DEPLOYMENT GUIDE

13

NGINX SSL Termination in the NGINX Plus Admin Guide and the documentation for the HTTP SSL module.
 

Firewall

Configure your firewall to disallow outside access to the port for the dashboard (8080 in the sample

configuration file).  

Finalizing Configuration of the Dashboard

Inside the server blocks for each both the ssl and unencrypted servers, add the status_zone directive:

server {

 listen 80;

 status_zone websphere;

 ...

}

When you reload NGINX Plus with the new configuration:

nginx –s reload

The NGINX Plus dashboard is available immediately at http://nginx-server-address:8080.

http://nginx.com/resources/admin-guide/nginx-ssl-termination/
http://nginx.com/resources/admin-guide/
http://nginx.org/en/docs/http/ngx_http_ssl_module.html
http://nginx.org/r/status_zone
http://nginx-server-address:8080/

IBM WEBSPHERE DEPLOYMENT GUIDE

14

Manually Translating plugin-cfg.xml

This section brings together the information from the above sections and uses it to translate a simple

plugin-cfg.xml. If you skipped straight to this section, that's fine; refer to the above sections when

necessary.

First, we must create the upstream blocks. Within the pl ugi n- cfg. x ml , locate a ServerCluster block

which you wish to translate. Within each Ser ver tag within the ServerCluster, you should see

Transport tags, e.g.:

<ServerCluster Name="defaultServer_default_node_Cluster" ... >

 <Server ... >

 <Transport Hostname="localhost" Port="9080" Protocol="http"/>

 <Transport Hostname="localhost" Port="9443" Protocol="https">

 ...

 </Transport>

 </Server>

 <Server ... >

 <Transport Hostname="localhost" Port="9081" Protocol="http"/>

 <Transport Hostname="localhost" Port="9444" Protocol="https">

 ...

 </Transport>

 </Server>

</ServerCluster>

One upstream is required for each of the Protocol values. The hostname and port in each server

directive within the upstream should correspond to the Hostname and Port values within the

Transport tags in the plugin-cfg.xml. For the sample snippet above, the corresponding upstream

blocks in the NGINX.conf could be:

http {

 ...

 upstream defaultServer_default_node_Cluster_http {

 zone cluster_http 64k;

 server 127.0.0.1:9080;

 server 127.0.0.1:9081;

 }

 upstream defaultServer_default_node_Cluster_https {

 zone cluster_https 64k;

 server 127.0.0.1:9443;

 server 127.0.0.1:9444;

 }

}

Now, we must map URLs to these upstream blocks. Find the Uri Gr oup section corresponding to the

cluster:

<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"

Name="/webapp/*"/>

</UriGroup>

IBM WEBSPHERE DEPLOYMENT GUIDE

15

Each Uri tag in the Uri Gr oup needs at least one corresponding location block with pr oxy_pass directives

to point to the proper upstream groups. For the example Uri Gr oup, the corresponding HTTP location

block could be:

server {

 listen 80;

 ...

 location /webapp/ {

 proxy_pass http://defaultServer_default_node_Cluster_http;

 }

}

And the HTTPS location block, in the HTTPS-configured server block:

server {

 listen 443 ssl;

 ...

 location /webapp/ {

 proxy_pass https://defaultServer_default_node_Cluster_http;

 }

}

Note that, by default, the argument to location specifies a URL prefix to match against. More

complex arguments to the location block might be needed, depending on the value of the Name

attribute of the URI tag.

See the NGINX documentation for more details on the location block.

The above should be enough for simple communication between NGINX and Websphere Application

Server for a server cluster. The above steps should be repeated for each ServerCluster block within

the plugin-cfg.xml.

Further configuration

In the last section, we skipped some of the configuration within the ServerCluster and Server tags

themselves, such as ConnectTimeout and ServerIOTimeout. NGINX has similar configuration

options. Here are some of the common arguments to ServerCluster and Ser ver , and their

counterparts in NGINX:

• LoadBalanceWeight: weight argument to the server directive.

• RetryInterval: fail_timeout argument to the server directive.

• MaxConnections: (NGINX Plus only) The max_conns argument to the server directive.

• ConnectTimeout: proxy_connect_timeout directive.

• ServerIOTimeout: proxy_read_timeout directive.

• LoadBalance: See the above section, "Load Balancing".

• AffinityCookie: See the above section, "Session Persistence".

Documentation for these directives can be found in the upstream module documentation and the proxy

module documentation.

http://nginx.org/en/docs/http/ngx_http_core_module.html#location
http://nginx.org/en/docs/http/ngx_http_upstream_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html

IBM WEBSPHERE DEPLOYMENT GUIDE

16

Private WebSphere Headers

Normally, the IHS plugin sets some private headers that are sent only to the application server. These

headers may affect application processing. NGINX does not know how to set these headers by default.

Here is a sample config, which sets the private headers:

http {

 ...

 map $https $is_ssl {

 default false;

 on true;

 }

 server {

 ...

 location / {

 proxy_pass http://websphere;

 proxy_set_header "$WSSC" $scheme;

 proxy_set_header "$WSPR" $server_protocol;

 proxy_set_header "$WSRA" $remote_addr;

 proxy_set_header "$WSRH" $host;

 proxy_set_header "$WSRU" $remote_user;

 proxy_set_header "$WSSN" $server_name;

 proxy_set_header "$WSSP" $server_port;

 proxy_set_header "$WSIS" $is_ssl;

 # Note that these vars are only available if

 # NGINX was built with SSL

 proxy_set_header "$WSCC" $ssl_client_cert;

 proxy_set_header "$WSCS" $ssl_cipher;

 proxy_set_header "$WSSI" $ssl_session_id;

 # No equivalent NGINX variable for these headers.

 proxy_hide_header "$WSAT";

 proxy_hide_header "$WSPT";

 proxy_hide_header "$WSFO";

 }

 }

}

Most of the headers are set using the proxy_set_header directive, in combination with NGINX's

embedded variables. The only tricky header is $WSIS, whose value is mapped from the value of https

variable.

Plugin configuration

This section only applies if you are proxying from NGINX to IBM HTTP Server.

Usually, the WAS plugin will not allow the client to set any private headers. However, in this case, the

plugin must allow NGINX to set a few headers such as remote IP and host. We can allow NGINX to set

these headers through the TrustedProxyEnable and TrustedProxyList custom properties of the

plugin.

http://nginx.org/en/docs/http/ngx_http_core_module.html#variables

IBM WEBSPHERE DEPLOYMENT GUIDE

17

The value of TrustedProxyEnable should be set to true. and the value of TrustedProxyList

should be set to the hostname or IP of the machine that is running NGINX. These values can either be

manually set in the plugin-cfg.xml, or through the WAS administrative console. For instructions on

setting them through the admin console, see the knowledgecenter.

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=rwsv_plugin_customprop

IBM WEBSPHERE DEPLOYMENT GUIDE

18

Building NGINX from Source

This section only applies if you are using the open-source version of NGINX.

Certain features in the open source version of NGINX can only be enabled when it is compiled from

source. The following instructions are for a Unix-like system, with GNU make and buildtools. They were

tested on version 1.9.1, but the procedure should be similar for other versions.

1. Download NGINX source code:

 wget http://nginx.org/download/nginx-1.9.1.tar.gz

2. Unpack the archive using an unarchiver, i.e.

 tar -xvzf nginx-1.9.1.tar.gz -C $HOME.

3. Configure NGINX for your platform by cding to the directory you unzipped NGINX to, and running:

 ./configure --with-http_spdy_module --with-http_ssl_module

 Add a --add-module=THIRD_PARTY_MODULE_ROOT for each third party module being

compiled in, i.e. for session persistence.

 Arguments to configure are generally the way to add features. If you came to this

section from a previous section, now would be a good time to go back and check the
instructions there.

4. Run make to compile NGINX.

5. Run make install to install the newly compiled version of NGINX. You may need to run this

command as root.

 NOTE: This will install NGINX into the /usr/local/ directory. Running this as root will
replace any previous installation of NGINX installed in this directory. Configuration files
and logs will be kept, but other files will be overwritten. Binary packages from standard
distros install NGINX into the /usr/ directory. If this case please make sure to remove the
older version and backup your configuration before running make install.

IBM WEBSPHERE DEPLOYMENT GUIDE

19

Configuration Samples

This section provides sample configurations for both basic load balancing and advanced load balancing with
NGINX Plus. The configuration file should be saved to /etc/nginx/conf.d/websphere.conf. In the

main /etc/nginx/nginx.conf file ensure that include /etc/nginx/conf.d/*.conf; is present.

Basic Load Balancing Sample Configuration

This section provides a sample configuration for use with NGINX Open Source.

 proxy_cache_path /tmp/NGINX_cache/ keys_zone=backcache:10m;

 map $http_upgrade $connection_upgrade {

 default upgrade;

 '' close;

 }

 map $https $is_ssl {

 default false;

 on true;

 }

 upstream websphere {

 # Use IP Hash for session persistence

 ip_hash;

 # List of WebSphere Application Servers

 server 127.0.0.1:9080;

 server 127.0.0.1:9081;

 }

 upstream websphere-ssl {

 # Use IP Hash for session persistence

 ip_hash;

 # List of WebSphere Application Servers

 server 127.0.0.1:9443;

 server 127.0.0.1:9444;

 }

 server {

 listen 80;

 # Return a 302 Redirect to the /webapp/ directory

 # when user requests /

 location = / {

 return 302 /webapp/;

 }

 # A location block is need per URI group

 location /webapp/ {

 proxy_pass http://websphere;

 proxy_cache backcache;

 proxy_set_header "$WSSC" $scheme;

IBM WEBSPHERE DEPLOYMENT GUIDE

20

 proxy_set_header "$WSPR" $server_protocol;

 proxy_set_header "$WSRA" $remote_addr;

 proxy_set_header "$WSRH" $host;

 proxy_set_header "$WSRU" $remote_user;

 proxy_set_header "$WSSN" $server_name;

 proxy_set_header "$WSSP" $server_port;

 proxy_set_header "$WSIS" $is_ssl;

 # Note that these vars are only available if

 # NGINX was built with SSL

 proxy_set_header "$WSCC" $ssl_client_cert;

 proxy_set_header "$WSCS" $ssl_cipher;

 proxy_set_header "$WSSI" $ssl_session_id;

 # No equivalent NGINX variable for these headers.

 proxy_hide_header "$WSAT";

 proxy_hide_header "$WSPT";

 proxy_hide_header "$WSFO";

 }

 # WebSocket configuration

 location /wstunnel/ {

 proxy_pass http://websphere;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

 }

 server {

 listen 443 ssl spdy;

 ssl_certificate certchain.pem;

 ssl_certificate_key privkey.pem;

 ssl_session_cache shared:SSL:1m;

 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;

 ssl_prefer_server_ciphers on;

 # Return a 302 Redirect to the /webapp/ directory

 # when user requests /

 location = / {

 return 302 /webapp/;

 }

 # A location block is need per URI group

 location /webapp/ {

 proxy_pass https://websphere;

 proxy_cache backcache;

 proxy_set_header "$WSSC" $scheme;

 proxy_set_header "$WSPR" $server_protocol;

 proxy_set_header "$WSRA" $remote_addr;

 proxy_set_header "$WSRH" $host;

 proxy_set_header "$WSRU" $remote_user;

 proxy_set_header "$WSSN" $server_name;

 proxy_set_header "$WSSP" $server_port;

IBM WEBSPHERE DEPLOYMENT GUIDE

21

 proxy_set_header "$WSIS" $is_ssl;

 # Note that these vars are only available if

 # NGINX was built with SSL

 proxy_set_header "$WSCC" $ssl_client_cert;

 proxy_set_header "$WSCS" $ssl_cipher;

 proxy_set_header "$WSSI" $ssl_session_id;

 # No equivalent NGINX variable for these headers.

 proxy_hide_header "$WSAT";

 proxy_hide_header "$WSPT";

 proxy_hide_header "$WSFO";

 }

 # WebSocket configuration

 location /wstunnel/ {

 proxy_pass https://websphere;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

 }

Advanced Load Balancing Sample Configuration

This section provides a sample configuration using the advanced features available in NGINX Plus.

 proxy_cache_path /tmp/NGINX_cache/ keys_zone=backcache:10m;

 map $http_upgrade $connection_upgrade {

 default upgrade;

 '' close;

 }

 map $https $is_ssl {

 default false;

 on true;

 }

 upstream websphere {

 # Health-monitored upstream groups must be stored in shared memory

 zone websphere 64k;

 # List of WebSphere Application Servers

 server 127.0.0.1:9080 slow_start=30s;

 server 127.0.0.1:9081 slow_start=30s;

 # Session Persistence based on JSESSION ID, if necessary

 sticky learn

 create=$upstream_cookie_JSESSIONID

 lookup=$cookie_JSESSIONID

 zone=client_sessions:1m;

 }

 upstream websphere-ssl {

 # Health-monitored upstream groups must be stored in shared memory

 zone websphere-ssl 64k;

 # List of WebSphere Application Servers

http://nginx.com/products/

IBM WEBSPHERE DEPLOYMENT GUIDE

22

 server 127.0.0.1:9443 slow_start=30s;

 server 127.0.0.1:9444 slow_start=30s;

 # Session Persistence based on JSESSION ID, if necessary

 sticky learn

 create=$upstream_cookie_JSESSIONID

 lookup=$cookie_JSESSIONID

 zone=client_sessions-ssl:1m;

 }

 server {

 listen 80;

 # Required for NGINX Plus to provide extended status information.

 status_zone websphere;

 # Return a 302 Redirect to the /webapp/ directory

 # when user requests /

 location = / {

 return 302 /webapp/;

 }

 # A location block is need per URI group

 location /webapp/ {

 proxy_pass http://websphere;

 proxy_cache backcache;

 # Set up active health checks. If the server responds with a

 # status other than 2xx or 3xx, the health check will fail

 # and the server will be marked down.

 # For more options with health_check, see:

 # http://nginx.org/en/docs/http/ngx_http_upstream_module.html

 health_check;

 proxy_set_header "$WSSC" $scheme;

 proxy_set_header "$WSPR" $server_protocol;

 proxy_set_header "$WSRA" $remote_addr;

 proxy_set_header "$WSRH" $host;

 proxy_set_header "$WSRU" $remote_user;

 proxy_set_header "$WSSN" $server_name;

 proxy_set_header "$WSSP" $server_port;

 proxy_set_header "$WSIS" $is_ssl;

 # Note that these vars are only available if

 # NGINX was built with SSL

 proxy_set_header "$WSCC" $ssl_client_cert;

 proxy_set_header "$WSCS" $ssl_cipher;

 proxy_set_header "$WSSI" $ssl_session_id;

 # No equivalent NGINX variable for these headers.

 proxy_hide_header "$WSAT";

 proxy_hide_header "$WSPT";

 proxy_hide_header "$WSFO";

 }

 # WebSocket configuration

 location /wstunnel/ {

 proxy_pass http://websphere;

 proxy_http_version 1.1;

IBM WEBSPHERE DEPLOYMENT GUIDE

23

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

 }

 server {

 listen 443 ssl spdy;

 # Required for NGINX Plus to provide extended status information.

 status_zone websphere-ssl;

 ssl_certificate certchain.pem;

 ssl_certificate_key privkey.pem;

 ssl_session_cache shared:SSL:1m;

 ssl_session_timeout 5m;

 ssl_ciphers HIGH:!aNULL:!MD5;

 ssl_prefer_server_ciphers on;

 # Return a 302 Redirect to the /webapp/ directory

 # when user requests /

 location = / {

 return 302 /webapp/;

 }

 # A location block is need per URI group

 location /webapp/ {

 proxy_pass https://websphere-ssl;

 proxy_cache backcache;

 # Set up active health checks. If the server responds with a

 # status other than 2xx or 3xx, the health check will fail

 # and the server will be marked down.

 # For more options with health_check, see:

 # http://nginx.org/en/docs/http/ngx_http_upstream_module.html

 health_check;

 proxy_set_header "$WSSC" $scheme;

 proxy_set_header "$WSPR" $server_protocol;

 proxy_set_header "$WSRA" $remote_addr;

 proxy_set_header "$WSRH" $host;

 proxy_set_header "$WSRU" $remote_user;

 proxy_set_header "$WSSN" $server_name;

 proxy_set_header "$WSSP" $server_port;

 proxy_set_header "$WSIS" $is_ssl;

 proxy_set_header "$WSCC" $ssl_client_cert;

 proxy_set_header "$WSCS" $ssl_cipher;

 proxy_set_header "$WSSI" $ssl_session_id;

 # No equivalent NGINX variable for these headers.

 proxy_hide_header "$WSAT";

 proxy_hide_header "$WSPT";

 proxy_hide_header "$WSFO";

 }

 # WebSocket configuration

 location /wstunnel/ {

 proxy_pass https://websphere-ssl;

IBM WEBSPHERE DEPLOYMENT GUIDE

24

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection $connection_upgrade;

 }

 }

Summary

This concludes the Using NGINX to Load Balance IBM WebSphere Deployment Guide. In this guide we
went through how to configure to configure NGINX to properly load balalnce IBM WebSphere Application
Servers. For further information about NGINX and NGINX Plus, please see the following:

• NGINX Plus Overview
• NGINX Plus Admin Guide
• NGINX Wiki

http://www.nginx.com/products
http://nginx.com/resources/admin-guide/
http://wiki.nginx.org/Main

	Using NGINX
	3 About NGINX Plus
	Using this Guide
	Prerequisites and
	System Requirements
	NGINX vs. IBM HTTP Server
	Basic Load Balancing with NGINX
	Load Balancing
	Failover
	Session Persistence
	Configuring NGINX to Proxy SSL traffic
	Enabling SSL in NGINX
	Extracting the certificate and private key
	Configuring SSL in NGINX

	Proxying Websockets
	Caching
	SPDY Support

	Advanced Load Balancing with NGINX Plus
	Health checks
	Session Persistence
	Enabling the Live Activity Monitoring Dashboard
	Installing the Dashboard
	IP address-based access control lists (ACLs)
	HTTP basic authentication
	Firewall
	Finalizing Configuration of the Dashboard

	Manually Translating plugin-cfg.xml
	Further configuration

	Private WebSphere Headers
	Plugin configuration

	Building NGINX from Source
	Configuration Samples
	Basic Load Balancing Sample Configuration
	Advanced Load Balancing Sample Configuration
	Summary

